通知公告

通知公告 当前位置: 首页 >> 正文

pg电子中国官方网站 线上学术报告---------郑云瑞教授(山东大学)

发布日期:2024-12-24点击:

————————————————————————————————————

报告题目:Dynamics of contact lines in 2D Navier-Stokes flow.


报告人:郑云瑞(山东大学)

————————————————————————————————————

报告时间:2024年12月25日星期三14:30—15:30

会议链接:https://meeting.tencent.com/dm/aOMk0mQn8bZ8

#腾讯会议:706-484-519

会议密码:2021


报告摘要:We study the dynamics of an incompressible viscous fluid evolving in an 2D open-top container. The fluid are dictated by the Navier–Stokes equations. The upper boundary of the fluid is free and evolves within the container. The fluid is acted upon by a uniform gravitational field, and capillary forces along the free boundary. The triple-phase interfaces where the fluid, air above the container, and solid container’s wall come in contact are called contact points, and the angles formed at the contact points are called contact angles. The model that we consider integrates boundary conditions that allow for full motion of the contact points and angles. We establish the global well-posedness near the equilibrium configurations which consist of quiescent fluid within a domain whose upper boundary is given as the graph of a function minimizing a gravity-capillary energy functional, subject to a fixed mass constraint.

——————————————————————————————————

专家简介:

   郑云瑞教授任职于山东大学数学学院,2017年毕业于北京大学获理学博士学位,2015.9-2016.9访问美国布朗大学。主要研究方向为流体中偏微分方程的适定性和稳定性,具体内容包含黏性水波 (Navier-Stokes )和水波 (Euler)等自由边值问题的适定性和稳定性,双曲型方程的爆破,调和分析和拟黎曼几何在PDE中的应用。部分成果发表在Mem. AMSSIAM J. Math. Anal.Dyn. PDEActa Math. Sin. (Engl. Ser.) 等国际专业期刊上。





欢迎广大师生参加!